Table 7.1Test waveformsfor evaluatingsteady-stateerrors ofposition controlsystems

Figure 7.1 Test inputs for steadystate error analysis and design vary with target type

Figure 7.2 Steady-state error: a. step input; b. ramp input

Closed-loop control system error: **a.** general representation; **b.** representation for unity feedback systems

Figure 7.4 System with: a. finite steady-state error for a step input; b. zero steady-state error for step input

Figure 7.5 Feedback control system for Example 7.2

Figure 7.6 Feedback control system for Example 7.3

Figure 7.7 Feedback control systems for Example 7.4

$$\frac{R(s) + E(s)}{s^{2}(s+4)(s+5)(s+6)(s+7)} \xrightarrow{C(s)} C(s)$$

(c)

Figure 7.8 Feedback control system for defining system type

Table 7.2Relationships between input, system type, static errorconstants, and steady-state errors

Input	Steady-state error formula	Туре О		Type 1		Туре 2	
		Static error constant	Error	Static error constant	Error	Static error constant	Error
Step, $u(t)$	$\frac{1}{1+K_p}$	$K_p =$ Constant	$\frac{1}{1+K_p}$	$K_p = \infty$	0	$K_p = \infty$	0
Ramp, $tu(t)$	$\frac{1}{K_v}$	$K_v = 0$	∞	$K_v =$ Constant	$\frac{1}{K_{v}}$	$K_v = \infty$	0
Parabola, $\frac{1}{2}t^2u(t)$	$\frac{1}{K_a}$	$K_a = 0$	œ	$K_a = 0$	œ	$K_a =$ Constant	$\frac{1}{K_a}$

A robot used in the manufacturing of semiconductor random-access memories (RAMs) similar to those in personal computers. Steady-state error is an important design consideration for assemblyline robots.

© Westlight/ Charles O'Rear.

Figure 7.10 Feedback control system for Example 7.6

Figure 7.11 Feedback control system showing disturbance

Controller

Figure 7.14 System for Skill-Assessment Exercise 7.4

Figure 7.15 Forming an equivalent unity feedback system from a general nonunity feedback system

Figure 7.16 Nonunity feedback control system for Example 7.8

Figure 7.17 Nonunity feedback control system with disturbance

Figure 7.18 Nonunity feedback system for Skill-Assessment Exercise 7.5

Figure 7.19 Feedback control system for Examples 7.10 and 7.11

Figure 7.20 Feedback control system for Example 7.12

Figure 7.21 System for Skill-Assessment Exercise 7.6

Video laser disc recording: control system for focusing write beam

Video disc laser recording: **a.** focus detector optics; **b.** linearized transfer function for focus detector

Video laser disc recording focusing system

Table 7.1Test waveformsfor evaluatingsteady-stateerrors ofposition controlsystems

Figure 7.1 Test inputs for steadystate error analysis and design vary with target type

Figure 7.2 Steady-state error: a. step input; b. ramp input

Closed-loop control system error: **a.** general representation; **b.** representation for unity feedback systems

Figure 7.4 System with: a. finite steady-state error for a step input; b. zero steady-state error for step input

Figure 7.5 Feedback control system for Example 7.2

Figure 7.6 Feedback control system for Example 7.3

Figure 7.7 Feedback control systems for Example 7.4

$$\frac{R(s) + E(s)}{s^{2}(s+4)(s+5)(s+6)(s+7)} \xrightarrow{C(s)} C(s)$$

(c)

Figure 7.8 Feedback control system for defining system type

Table 7.2Relationships between input, system type, static errorconstants, and steady-state errors

Input	Steady-state error formula	Туре О		Type 1		Туре 2	
		Static error constant	Error	Static error constant	Error	Static error constant	Error
Step, $u(t)$	$\frac{1}{1+K_p}$	$K_p =$ Constant	$\frac{1}{1+K_p}$	$K_p = \infty$	0	$K_p = \infty$	0
Ramp, $tu(t)$	$\frac{1}{K_v}$	$K_v = 0$	∞	$K_v =$ Constant	$\frac{1}{K_{v}}$	$K_v = \infty$	0
Parabola, $\frac{1}{2}t^2u(t)$	$\frac{1}{K_a}$	$K_a = 0$	œ	$K_a = 0$	œ	$K_a =$ Constant	$\frac{1}{K_a}$
A robot used in the manufacturing of semiconductor random-access memories (RAMs) similar to those in personal computers. Steady-state error is an important design consideration for assemblyline robots.

© Westlight/ Charles O'Rear.

Figure 7.10 Feedback control system for Example 7.6

Figure 7.11 Feedback control system showing disturbance

Controller

Figure 7.14 System for Skill-Assessment Exercise 7.4

Figure 7.15 Forming an equivalent unity feedback system from a general nonunity feedback system

Figure 7.16 Nonunity feedback control system for Example 7.8

Figure 7.17 Nonunity feedback control system with disturbance

Figure 7.18 Nonunity feedback system for Skill-Assessment Exercise 7.5

Figure 7.19 Feedback control system for Examples 7.10 and 7.11

Figure 7.20 Feedback control system for Example 7.12

Figure 7.21 System for Skill-Assessment Exercise 7.6

Video laser disc recording: control system for focusing write beam

Video disc laser recording: **a.** focus detector optics; **b.** linearized transfer function for focus detector

Video laser disc recording focusing system

Figure P7-2 (p. 405)

Table P7.1

Figure P7-5 (p. 408)

Figure P7.13 Closed-loop systems with nonunity feedback

Figure P7.18 System with input and disturbance

Figure P7.20 System with input and disturbance

Automobile guidance system **a.** displacement control system; **b.** velocity control loop

Block diagram of a paramagnetic oxygen analyzer

Figure P7.23 Space station Freedom: a. configuration (figure continues)

© 1992 AIAA.

(*continued*) **b.** simplified block diagram **c.** alpha joint drive train and control system

© 1992 AIAA.

Figure P7.24 Position control system

Figure P7.25 Boat tracked by ship's radar: a. physical arrangement; b. block diagram of tracking system

Simplified block diagram of a pilot in a loop

© 1992 AIAA.

a. Force control mechanical loop under contact motion (©1996 IEEE);
b. block diagram (©1996 IEEE)

